
Generating functions for connected embeddings in a lattice: V. application to the simple cubic

and body-centred cubic lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 3407

(http://iopscience.iop.org/0305-4470/19/16/035)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 3407-3414. Printed in Great Britain 

Generating functions for connected embeddings in a lattice: V. 
Application to the simple cubic and body-centred cubic lattices 
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Wheatstone Physics Laboratory, King’s College, University of London, Strand, London 
WC2R 2LS. UK 

Received 18 December 1985 

Abstract. The method of partial generating functions is used to derive, for the simple cubic 
lattice, the number of connected strong embeddings through 13 sites, the number of 
connected weak embeddings through 14 bonds and three new bond perimeter polynomials 
D,,, D, , ,  D,, for the bond percolation problem. For the body-centred cubic and simple 
cubic lattices an expression is derived for the mean number of clusters for the site percolation 
problem in powers of the probabilities of occupation of A and B sites. 

1. Introduction 

In this paper we report some applications of the techniques developed in previous 
papers (Sykes 1986a, b, c, d, hereafter referred to as I-IV respectively) to the simple 
cubic and body-centred cubic lattices, In 1-111 the method of partial generating 
functions was developed using the body-centred cubic lattice as an example; by 
repeating the calculations for the simple cubic lattice we have obtained the number 
of connected strong embeddings with details of their bond content through 13 sites, 
the number of connected weak embeddings with details of their site content through 
14 bonds and the bond perimeter polynomials through DI2. We give these results, in 
the notation of I and 11, in appendices 1, 2 and 3, respectively. The expansion of the 
generating function for the simple cubic lattice for the most complicated case, the 
bond perimeter substitution using the auxiliary polynomials (2.3) of 111, took only 
8 min of CPU time on the Cray. 

The pilot study of I and I1 was based on a classification of all the arrangements 
of up to six cubes; the classification was achieved manually by exhaustive enumeration 
of all the possibilities using the shadow lattice techniques developed originally for a 
study of the Ising model (Sykes et a1 1965, 1973a, b, Sykes 1979). The classification 
of arrangements of cubes is visually simple; the analogous classification of arrangements 
of octahedra required to duplicate the calculations of 1-111 for the simple cubic lattice 
is rather less so, although the total number of configurations is smaller. We have made 
an exhaustive manual enumeration of all the arrangements of up to six octahedra; the 
corresponding shadow lattice is the face-centred cubic lattice with second neighbours 
(Sykes er a1 1973a). We have been able to check both the above enumerations by 
computer, using a program developed by J L Martin (private communication); this 
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required 250 min for the body-centred cubic problem and 75 min for the simple cubic 
problem on the Cray. We shall not give any details of these calculations since they 
are likely to be superseded by improved routines currently being developed. 

Our chief objective is to apply the alternative procedure developed in IV to the 
derivation of series expansions for the site percolation problem. Since site perimeter 
polynomials are available for the simple cubic lattice up to eleven sites and for the 
body-centred cubic up to ten sites (Sykes er a1 1976) it suffices to derive expansions 
for the mean number of clusters only; expansions for other quantities of interest can 
then be deduced indirectly (Sykes and Wilkinson 1986). In § 2 we investigate how to 
develop the mean number expansion when there are two species of site. In § 3 we 
apply similar ideas to the mean number of clusters for the bond percolation problem 
and obtain a partial verification of the expansions given in I11 (equations (4.1) and 
(4.2)). Finally, although we have not had to use the techniques explicitly, for the 
reason stated above, we give in P 4 some indication of how the exploitation of sublattice 
symmetry can be applied to the expansion of the mean size of finite clusters. 

This paper reports new data; most of the theoretical background is covered by the 
references cited. 

2. Bipartite percolation: expansion for the mean number of clusters 

The generalisation of the site problem on a bipartite graph, by the introduction of 
separate probabilities a, p for the presence of A and B sites respectively, has already 
been made in IV. A general prescription for obtaining the mean number of clusters 
by the use of unrestricted generating functions is given there. To illustrate how these 
ideas can be used to exploit the sublattice symmetry of the simple cubic and body- 
centred cubic lattices we quote below the results of applying the techniques of IVY § 3, 
to the finite graphs G I ,  G 2 ,  G3 which correspond in each case to a connected 
configuration of two cubic shadows on the body-centred cubic system when all the A 
and B sites are present: 

A - - -  /.- - - 
/ I /? 

,<’-I-,<- 4-4/ I 
I I I I I 1 (3N)  
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If we weight the functions K ,  , K , ,  K3 by the number of occurrences of each shadow 
pattern we obtain a total contribution (per lattice site) of 

26a+ 180p - 2 0 8 c ~ p + 2 4 a ~ p ’ -  12a2P3+3a2P4. (2.4) 

In (2.4) the last three terms, which make up the coefficient of a’, are identical (apart 
from a factor of 2 due to our working per sublattice site) with the terms in a’ for the 
expansion for the infinite lattice (equation (1.4) of IV). It is easy to see why this has 
to be the case: the mean number function has a connected graph expansion (Essam 
and Sykes 1966); any embedding with a non-zero weight that contributes to the 
coefficient of a’ must have two A sites and these can be taken as defining some 
embedding of the shadows illustrated above. But all the connected graphs which are 
associated with the same embedding must contribute also to the coefficient of a’ for 
the finite graph and conversely. For the same reason we need not consider any 
arrangement of shadows that is disconnected. 

We can therefore exploit the symmetry of the two sublattices in the usual way to 
deduce the coefficient of any term axpy with x > y  from that of aYpX. Using the 
configurational data for all the possible contacts of up to six octahedral shadows for 
the simple cubic lattice and for up to six cubic shadows for the body-centred cubic 
lattice, we have derived all the terms in the mean number expansions for these two 
lattices through pI3 in general form (the calculation was performed on the University 
of London Cray computer in under 2 min CPU time): 

simple cubic lattice: 

K =f(a+p)-3aP+3aZp2+4~383-4a3P3(a+P)+3Oa484-37ta4p4(a+P) 

+ 294a 5p5 + 1 5a4p4( a’ + p’ )  - 522a5P5( 

+378a5P5(a2+P2)  -6777a6p6(a + p )  - 117a5P5(a3+ p3)  +. , . 
+ p )  + 3 193a6P6 

(2.5) 

body-centred cubic lattice: 

K =;(a  + p )  -4ap + 12a2P2 -6a2P2( + p )  +4a3P3 + ~ ~ ~ * p ’ ( a ~ +  p 2 )  - 4 a 3 p 3 ( a  + p )  
+220a4P4-474a4P4(a + p )  + 3108a5P5+485a4P4(a2+ p 2 )  

-8212a5p5(a +p)-281a4p4(a3+P3)+65 304a6P6 

+ 10 468a 5 p  5 (  + p’)  + 96a4p4( a4 + p4) - 209 372a6p6( a + p )  
-74114a5p5(a3+ p 3 )  - 18a4P4(a5+ p 5 )  + , . . . (2.6) 

Setting a = p = p we obtain the corresponding expansions for the one-variable problem: 

Ksc = p - 3p2 + 3p4 + 4p6 - 8p7 + 30p8 - 75p9 + 3 2 4 ~ ”  

- 1 0 4 4 ~ ” + 3 9 4 9 ~ ~ - 1 3 7 8 8 p ’ ~ + .  . . (2.7) 

- 16 9 8 6 ~ ”  + 86 4 3 2 ~ ”  -433 6 0 3 ~ ’ ~  + , , , . (2.8) 

KBcc = p  -4p’+ 12p4- 12p5+7p6-8p7+220p8-948p9+4078p’0 

We make a detailed application of these two expansions in a companion paper (Sykes 
and Wilkinson 1986). By using the generating functions of IV we have been able to 
avoid having to list all the strong embeddings through 13 sites on these two lattices. 
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3. Bond percolation: expansion for the mean number of clusters 

The correctness of the data derived for weak embeddings is dependent upon that of 
the expansion of the mean number of bond clusters used in their derivation. We now 
show how to apply the theory developed in IV, 0 4, to check the series given in 111, 
0 4, which were used in I1 to complete the data for the body-centred cubic lattice (in 
the appendix) and in the present paper to complete the corresponding data for the 
simple cubic lattice (appendix 2). 

Direct expansion of the mean number of clusters in a bond mixture calls for a 
bond-grouped list of weak star embeddings (see Essam and Sykes (1966) for a detailed 
treatment); for the body cubic lattice the expansion begins 

K ( p )  = 1 -4p + 12p4+ 1 3 6 ~ ~ -  192p7+2307p8+. . . . (3.1) 
In (3.1) we have adopted the null-cluster convention, which allows isolated sites; the 
expected number of clusters per site then approaches unity as p approaches zero. The 
coefficient of p6,  for example, corresponds to weak embeddings of two star graphs: 

the hexagon fi (148 embeddings per site) k - w t :  +I  

‘tr 
and the theta graph (6 embeddings each per site) k - wt: -1. 

For a bipartite lattice the distribution of the vertices of these weak embeddings on the 
two sublattices plays no significant role in the theory of the star expansion, but we 
can include information on this distribution in a purely formal way by introducing 
variables, a and b, and writing the coefficient of p6 illustrated above: 

By inspection of the star data used in the original derivation of (3.1) to p14 given in 
11, § 4, equation (4.2) we have re-derived the expansion in this detailed form as 
K ( p )  = ; ( U +  6) -4abp+ 1 2 a 2 b 2 p 4 + [ 1 4 8 ~ 3 6 3 - 6 ( a 3 6 2 + a Z b 3 ) ] p 6 -  192a3b3p7 

148a3b3 -6a3b2-6a2b3. (3.2) 

+ [2736a4b4-240(a4b3+ u3b4) +48a3b3+4(a4b2+ a 2 b 4 ) ] p 8  

+ [-7012a4b4+332(a4b3+ a3b4)]p9+ [61 896a’b’ -9342(a5b4+ a4b5) 

+7636a4b4+ 144(asb3+ ~ ~ 6 ’ )  -96(a4b3+ ~ ~ b ~ ) ] p ”  

+ [ -237 468asb5+ 24 756( a5b4+ a4b5) - 4 0 9 2 ~ ~ 6 ~  

- 216(asb3+ a3b’)]p” + [ 1579324a6b6-352 578(a6b’+ asb6) 
+468 096asbs+ 12 127(a6b4+ a4b6) -26 292(a5b4+ a4b5)  
-30(a6b3+ a3b6)  + 1 0 1 6 ~ ~ b ~ + 7 2 ( ~ ’ 6 ~ +  ~ ~ b ’ ) ] p ’ ~  

+[-8124 192a6b6+ 1395 996(a6b’+a’b6)-559 128a5bs 
-32 880(a6b4+a4b6)+ 13 332(asb4+ a4b5)  

+[43 7 0 2 9 2 0 ~ ~ 6 ~ -  13 119 462(a7b6+ a6b7)+23 424960a6b6 

+411 804a5b5+35 346(a6b4+a4b6) 

+48(a6b3+ a3b6)  - 6 4 ~ ~ b ~ I p ’ ~  

+777 060(a7b5+ a5b7)-2611 548(a6b5+a5b6) -7548(a7b4+a4b7) 

-3156(asb4- a4b5) - 18(a6b3+ a3b6)]p14 
+.... (3.3) 
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Some 340 star graphs contribute to the final coefficient in (3.3); the introduction of 
the variables a and b enables us to provide some check on the accuracy of the derivation. 
In IV, 0 4, a prescription is given for the derivation of the mean number function K ( p )  
for a bipartite graph; there it is shown how to extract that part of K ( p )  that corresponds 
to the contribution of stars with a full complement of A sites. By applying this 
prescription successively to all the arrangements of 1-6 cubes we have been able to 
obtain expansions that are consistent with (3.3). Thus for example the coefficient of 
pI4 with a full complement of A sites derived from six cubes is found to be 7729 278 
and this is in agreement with the contribution indicated by (3.3) which is just the sum 
of the coefficients of a6b3p14, a6b4p14, a6b5p14, .  . . to exhaustion. Effectively we obtain 
a consistency check on all the coefficients arbs for which either r s 6 or s 4 6; the only 
term not checked is therefore that in a'b' which must have cyclomatic index unity 
and corresponds simply to the fourteen-sided polygon. 

4. Bipartite percolation: expansion for the mean size of clusters 
The methods of P 2 can also be used to derive an expansion for the mean size, S ( p ) ,  
of clusters; we define this latter concept precisely in a companion paper (Sykes and 
Wilkinson 1986); for our present objective it suffices to notice that interest centres on 
the expansion of the unnormalised second moment, p S (  p ) ,  which we denote by S*( p ) .  
For the body-centred cubic lattice the expansion begins (Sykes et a1 1976): 

S*(p)=p+8p2+56p3+248p4i-1232p5+. , . . (4.1) 

(4.2) 

The corresponding expansion for the bipartite lattice mixture is 

S*(a, p )  =$(a + p )  + 8ap + 28ap(a  + p )  +248a2P2+616a2p2(a + p )  +. . . . 
Using elementary methods the corresponding moments for the three shadow graphs 
of 0 2 are readily found to be 

St=2a+12/3+32ap+8a2P+112ap2+40a2P2 

+40a2P3 - 13Oa2p4+ l12a2P5  -32a2p6 

S T = 2 a  + 14p + 32ap + 4 a 2 P  + 112ap2+44a2P2+ 120a3P3 -72a2p4 

(4.3) 

(4.4) 

S f  = 2 a  + 15p +32ap + 2 a 2 p +  112ap2+28a2P2+98a2P3. 

The weighted total 
(4.5) 

3St+6ST +4ST = . . . +496a2P2+ 1232a2P3 - 822a2P4+336a2P5+. . . (4.6) 
corresponds in an analogous manner to the coefficients of the infinite lattice (apart 
from a factor of 2) for all the terms of the form a2pr,  r >  2. 

For the simple cubic lattice and body-centred cubic lattice it is not necessary to 
apply the methods of the present section to the derivation of the second moment since, 
as we show in Sykes and Wilkinson (1986), there are enough perimeter polynomials 
available for this to be obtained indirectly using (4.1) or (4.2). The whole process of 
obtaining second moments by the use of generating functions follows the general 
pattern used for the mean number function but is of necessity more complicated in 
its detailed application. We hope to develop it further subsequently. 
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Appendix 1. Strong embeddings of clusters in the simple cubic lattice grouped by site 
and bond content 

A, = 1 

A2=3b 

A, = 15b2 

A, = 83b3 + 3b4 

A, = 486b4 + 48b5 

A6 = 2967 b5+ 496b6+ 18 b7 

A, = 18 748b6+4368 b7+ 378b8+ 8b9 

A,= 121 725b7+36 027b8+4854b9+3O6b"+ b" 

A,= 807 381b8+288 732b9+51 030b'0+5544b1'+ 159b12+24b13 

AIo = 5447 203 b9 + 2280 792b" + 488 9766" + 72 244bI2 + 5 103 b', + 396bI4 + 24b15 

A,, =37 264974b1°+ 17 866 896bll-t-4463 316b'2+801 396b13 

+ 89 715 bI4+ 7568 b"+ 66Obl6 + 24b17 

A,*= 257 896 500b"+ 139 239 286b12+39 546 852bI3+8179 476bI4 

+ 1197 481b"f 132 681bI6+ 12 546bI7+ 1080b'8+3b20 

A,, = 1802 312 605bI2+ 1081 555 008bI3+343 288 410bI4 

+79 574 192bI5+ 13 869 918bI6+ 1929 048b17+215 204b" 

+23 976b19+864b20+96b21. 

Appendix 2. Weak embeddings of clusters in the simple cubic lattice grouped by bond 
and site content 

B o = x  

B,  = 3x2 

B2 = 15x3 

B, = 95x4 

B, = 6 7 8 ~ ~  + 3x4 

B5 = 5 2 2 9 ~ ~  + 48x5 

B6 = 42 4 6 4 ~ ~  + 6 2 2 ~ ~  

B7 = 357 9 8 7 ~ ~  + 7 3 0 8 ~ ~  + 18x6 

B8=3104013x9+81 981x8+450x7 

B9=27 511 3 0 0 ~ ' ~ + 8 9 5  536x9+7958x8+8x7 
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Blo = 248 160 1 6 2 ~ "  + 9627 966x1'+ 119 520x9 + 372x' 

Bll = 2270 927 307xI2+ 102 460 4 8 8 ~ "  + 1640 634x1'+9036x9+ 12x' 

BI2 = 21 032 126 627xI3+ 1083 057 959xI2+21 266 068x" + 172 345x"+447x9+x8 

B13= 196 774 731 204x14+ 11 396 143 O92xl3+265 101 6 8 4 ~ ' ~  

+ 2857 1 8 2 ~ "  + 12 447x1'+ 24x9 

B14 = 1857 077 730 3 9 3 ~ ' ~  + 119 533 01 1 8 5 2 ~ ' ~  

+3213 321 288xI3+43 317 2 3 7 ~ ~ ~ + 2 7 4 4 1 9 ~ ~ ~ + 7 5 6 x ~ ' .  

Appendix 3. Bond perimeter polynomials for the simple cubic lattice (for earlier terms 
see Sykes et al (1981)) 

Dl0 = 37 264 974q6 + 73 034 952q45 + 70 171 248q4 

+ 45 126 408q43 + 17 533 

+ 3200 472q4'+ 3690 624q39 + 2699 952q3' + 843 138q37 

+ 177 060q36+41 280q3'+51 030q34+53736q33 

+ 9666q32 + 5088q3' + 306q28 + 66q26 

+ 4004 592q4I 

Dll = 257 896 500qso+570 616 752q49+627 603 288q48 

+469 676 808q47+240 021 897q46+ 80 393 760q4' 

+37 531 818qM+38 028 048q43+30675 228q42 

+ 15 418 152q4I+4226 472q4'+ 1151 064q39+636984q38 

+713 568q3'+321 738q36+90 744q35+25 608q34 

+ 5544q32+ 19O8q3l+ 1584q3'+ 12q25 

DI2= 1802 312 605q54+4442 485 104q53 

+ 5494 079 484qS2+4654 566 416q5' +2850 265 746q5' 

+ 1261 429 248q49+532 476 318q4'+412 747 008q47 

+333 878 916q46+213 839986q45+85 344 114qM 

+24531 618q43+11 524284q42+8047 308q4I 

+ 5990 499q40 + 2 1 12 640q39 + 7 13 256q38 

+ 106 104q37+72 244q36+62 553q35+27 660q34 

+9888q33+ 159q30+288q29+ q24. 



3414 M F Sykes and M K Wilkinson 

References 

Essam J W and Sykes M F 1966 J. Math. Phys. 7 1573-81 
Sykes M F 1979 J. Phys. A: Math. Gen. 12 879-92 
- 1986a J. Phys. A: Math. Gen.  19 1007-25 
- 1986b J. Phys. A: Math. Gen. 19 1027-32 
- 1986c J. Phys. A: Math. Gen. 19 2425-9 
- 19864 J. Phys. A: Math. Gen. 19 2431-8 
Sykes M F, Essam J W and Gaunt D S 1965 J. Math. Phys. 6 293-8 
Sykes M F, Gaunt D S, Essam J W, Heap B R, Elliott C J and Mattingly S R 1973a 1. Phys. A: Math., Nucl. 

Sykes M F, Gaunt D S, Essam J W and Hunter D L 1973b J. Math. Phys. 14 1060-5 
Sykes M F, Gaunt D S and Glen M 1976 J. Phys. A: Math. Gen. 9 1075-12 
- 1981 J. Phys. A: Math. Gen. 14 287-93 
Sykes M F and Wilkinson M K 1986 1. Phys. A: M a t h  Gen. 19 3415-24 

Gen. 6 1498-506 

Erratum 

In paper IV of this series, an error appeared at the printing stage. The three lines after 
equation (3 .5)  should be replaced by the following: 

'This is a strikingly simple result; for connected clusters each unrestricted generating 
function appears with weight (-l)"'+'( m - l ) !  and for the mean number this is replaced 
by ( - l )" ' (m-2)! . '  


